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Introduction

The lecture is dealing with the environmental aspects associated with 
global emissions of hydrogen: 

Natural and technical emission sources
Fate of atmospheric hydrogen - degradation mechanisms

Scenarios for future usage of hydrogen. 
Presently knowledge on the potential adverse environmental effects
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Outline of lecture

• Introduction
• Hydrogen in the environment

• Measurements and concentrations
• Sources for hydrogen emissions
• Fate of hydrogen: deposition ; atmospheric chemistry
• Literature review on the present findings on possible adverse
effects

• Production of Hydrogen
• Application of hydrogen technologies
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Structure of the atmosphere given by the 
typical temperature profile

•Troposphere - unstable temperature profile. 
•Tropospause is a sink for water vapour. 
•Stratosphere - region of ozone shield 
•Mesosphere. 
•Thermosphere 
•Exosphere (not indicated) is the boundary to space. 
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PRESSURE AND DENSITY PROFILES
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ATMOSPHERIC DIFFUSION

Diffusion coefficient, cm2/s
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Calculated molecular and turbulent diffusion coefficients 
the eddy diffusion in the dominating process in troposphere
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Radiation from the SUN
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Absorption of oxygen and ozone

wavelength λ /nm
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The difference in the sun spectrum shown before is partly due to
oxygen and ozone absorption in Meso- and stratosphere
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PHOTON ENERGIES

The table shows the relation between a 
photon’s energy and the wavelength. 

The photon energy is absorbed by molecules 
and initiates photo chemical reactions. 

For atmospheric relevant photo chemical 
reactions UV radiation is needed. 

1197053.20.1

119705.31

11970.510

1197.1100

598.5200

399.0300

299.3400

199.5600

149.6800

119.71000

Photon energy 
/kJ mol-1

Wavelength
/nm

photon
hcE hν
λ

= =

Ephoton – energy of a photon, J ; 

h - Planck’s constant, 6.626·10-34 J·s; 
ν - radiations frequency, s-1; 
c - speed of light, 3·108 m/s;
λ - wavelength, m
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COMPOSITION OF ATMOSPHERE

0.006Nitroxides, here NO+NO2
0.025Ozone, O3
0.08Carbon monoxide, CO
0.25Nitrous oxide, N2O
0.5Hydrogen, H2
1.4Methane, CH4
24.647Sum of nobel gases (He, Ne, Kr, Xe)
325Carbon dioxide, CO2
9340Argon, Ar

209460Oxygen, O2
780840Nitrogen, N2

Concentration     
ppm

Gas
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PHOTO CHEMICAL REACTIONS

1. The basic atmospheric degradation 
of pollutants is normally initiated by 
the hydroxyl free radicals (OH·). 

2. The mean OH concentration is 
about 106 molecules/cm3 air. 

3. This determines mainly the 
“oxidizing capacity” of the 
atmosphere

The reaction schemes show some examples for source and sink 
mechanisms for the hydroxyl free radical. 
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REACTIONS OF THE OH FREE RADICAL
2

2 2
OCO OH HO CO+ ⋅→ ⋅+

4 3 2CH OH CH H O+ ⋅→ ⋅+

2RH OH R H O+ ⋅→ ⋅+

2 2R O RO⋅ + → ⋅

2 2NO RO RO NO+ ⋅→ ⋅+

3
2 ( )hNO NO O Pν→ +

3
2 3( ) MO P O O+ →

1
3 2 ( )hO O O Sν→ +

1
2( ) 2O S H O OH+ → ⋅

Initiating reactions for 
carbon monoxide and methane

General initiating reaction

Chain reaction steps with oxygen
nitrogen monoxid

Photochemical reaction steps 
generating ozone and singlet 
oxygen atoms

Regenerating OH free radicals
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HYDROGEN CONCENTRATIONS 

Hydrogen in ppb
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• concentration is about 0.5 ppm 
• southern hemisphere has a higher 

hydrogen mixing ratio than 
northern hemisphere

• Remote, tropospheric hydrogen 
range from 0.45 to 0.55 ppm 

• variation with the seasonal cycles 
by about 0.050 ppm. 

• moderate polluted rural sites 0.8 
ppm may be observed. 

• Close to combustion sources 
higher. 

• In a tunnel near Zürich 
concentrations up to 6 ppm. 

• latter measurements correlate 
carbon monoxide concentration 
with a slope of 0.54 ppm H2 / ppm 
CO 
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SOURCES FOR HYDROGEN

8789.272 ±2077 ±167078.2Total sources

-0.2----Volcanoes

4 ±243 ±23 ±254Ocean release

3 ±233 ±23 ±154Nitrogen fixation

20 ±101516 ±516 ±111320Biomass burning

20 ±101715 ±1015 ±101620Fossil fuel combustion

40 ±155035 ±1540 ±163130.2Photochem. oxidation 
of methane and VOC

Seiler 
(1987)
±σ

Warneck
(1988)

Ehhalt
(1999) 
±σ

Novelli
(1999) 
±σ

Hauglustaine
(2002)

Sanderson 
(2003)

TgH2/year

SOURCES:

Tg = 106 ton (megaton)=1012g
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SOURCES IN PERCENT

HYDROGEN SOURCES: 
Novelli (1999) TgH2/year

Photochemical oxidation of 
methane and VOC

52%

Fossil fuel combustion
19%

Biomass burning
21%

Nitrogen fixation
4%

Ocean release
4%

Volcanoes
0%
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SINKS FOR HYDROGEN

98 ±238965 ±3075 ±417075.4Total sinks

8 ±31125 ±519 ±51517.1Photochemical 
oxidation

90 ±207840 ±3056 ±415558.3Deposition

Seiler 
(1987)
±σ

Warneck
(1988)

Ehhalt
(1999)
±σ

Novelli
(1999)
±σ

Hauglastine
(2002)

Sanderson 
(2003)

TgH2/year

SINKS
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SINKS IN PERCENT

HYDROGEN SINKS  
Novelli (1999)  TgH2/year

Deposition
75%

Photochemical oxidation
25%
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ATMOSPHERIC FATE

The atmospheric photochemical degradation of hydrogen is initiated by the 
hydroxyl free radical. 
The rate determining step for the whole sequence of reactions following.

2 2H OH H H O+ ⋅→ ⋅+

further reactions
2 2

MH O HO⋅ + → ⋅→

2 2 22 2H O H O+ →

Hydrogen follows the general atmospheric reaction mechanisms 
as explained in detail before. The final product is water. 
The overall reaction steps can be summarized by:

initiation

chain

sum reaction:
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BIOLOGICAL PROCESSES

The exact biological mechanisms are still unknown, but the following 
processes seem to be important:

• methanogeneses
• respiratory processes of anaerobic bacteria
• oxidation by ’Knallgas’ bacteria
• oxidation by free hydrogenase enzymes in soils

It has been hypothesized that the free hydrogenase enzymes are more 
important than the soil micro-organisms, as e.g. the Knallgas bacteria 
only oxidize hydrogen at elevated mixing ratios above the normal
atmospheric concentrations. 

The overall consumption is larger than production
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SOURCE AND SINKS UNCERTAINTY
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Future emissions of hydrogen
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Two scenarios for hydrogen in the transport sector (well to wheal approach).
Assumptions:
2030 - 22% and in 2050 - 75% of the traffic energy consumption based on hydrogen
and 2 technologies: 
present / advanced .

FC – fuel cell 
ICE – internal combustion engine
CH2- compressed hydrogen
LH2 – liquid hydrogen
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CARBON DIOXIDE EMISSIONS IN FUTURE
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HYPOTHESES on potential impacts from a 
global hydrogen economy

1. Increased hydrogen release would lower the atmosphere oxidizing capacity 
and so increase the lifetime of air pollutants and greenhouse gases 

2. Increased hydrogen release would lead to increased water vapour
concentrations in the atmosphere, with potential consequences for cloud 
formation, stratospheric temperatures and stratospheric ozone loss.

3. Increased hydrogen release could exceed the uptake capacity of hydrogen 
by micro-organisms in the soil. 

4. If hydrogen were to be generated using electricity derived from burning coal, 
NOx emissions could increase significantly. This would have serious effects 
on air pollution and the global tropospheric ozone budget.

5. Generating hydrogen from fossil fuels could lead to increased emissions of 
carbon dioxide, which would accelerate global warming, unless the CO2 is 
captured and stored.

6. Generating hydrogen from sustainable sources would reduce emissions of 
CO, CO2 and NOx, with a consequent fall in tropospheric ozone levels. This 
would improve air quality in many regions of the world. 
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KNOWLEDGE ON POTENTIAL EFFECTS

Although hydrogen acts as an indirect greenhouse gas (by lengthening the 
lifetime of methane), 

• its impact is small compared to other factors perturbing the global oxidizing 
capacity: H constitutes only about 5% of the average OH sink, and OH 
reacts much stronger to changes in reactive nitrogen emissions compared to 
changes in H emissions

• The amount of water vapour produced from increased hydrogen release and 
hydrogen combustion is negligible compared to the natural evaporation of 
water vapour. (exception would be cryoplanes), which could lead to 
additional cirrus formation (and therefore cooling of the upper troposphere).

• Changes in the stratospheric water vapour concentration due to increased 
hydrogen emissions would be less than the observed changes during past 
decades.

• The implications of these changes for the cooling of the lower stratosphere 
and the potential reduction of stratospheric ozone levels are still unclear, but 
not all like CFC problems.
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TEMPERATUR CHANGE AND OZONE DEPLETION

Relative temperature changes in the lower stratosphere at 74°N (solid 
line) and the resulting maximum ozone depletion in the northern polar 
vortex (dashed line) as a function of increased atmospheric hydrogen 
concentrations relative to the today’s actual hydrogen concentration of 
about 0.5 ppmv. The cause of the temperature change is the 
stratospheric water vapour resulting from the oxidation of hydrogen. 
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PRECAUTIONARY PRINCIPLE ON HYDROGEN

• Hydrogen should not be produced using electricity generated by 
burning fossil fuels. Instead, natural gas or coal reformers should be 
used at first, and replaced by renewable energy sources as soon as 
possible. CO2 capture from reformers should be seriously 
considered.

• Hydrogen should be used predominantly on the ground rather than 
in aircraft, and to achieve full benefits, fuel cells would be preferable 
against internal combustion engines.

• Leakage in the hydrogen energy chain should be limited to 1% 
wherever feasible, and global average leakage should not exceed 
3%.

• Atmospheric hydrogen concentrations should be carefully monitored. 
Enough research should be carried out to obtain a better 
understanding of hydrogen sources and sinks, and to provide an 
early warning system in case we have overlooked something.
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CONCLUSION

• At the moment a precaution may be to reduce the emissions as 
much as possible, which is of environmental but also of safety 
concerns, as hydrogen fires and gas phase explosions are very 
prominent concerns for hydrogen applications. There may also be 
some economic benefits as production, distribution and storage of 
hydrogen needs substantial amounts of energy and the hydrogen is
rather costly, but more detailed analyses are needed here. 
Therefore, it would be a win-win situation to minimize leakages.
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